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ABSTRACT 

For later development of design snow loads, the water equivalent of snow on the ground appears to be the best 
The appropriate climatological series for this is the winter 

Among many distributions investigated, the lognormal 
Distributions fitted to 140 stations provided data 

In  southern areas of the United States, where snow does 
This requires the 

A contour map is provided of the mixture parameter estimate. 

meteorological variable for determining design values. 
season maximum accumulated water equivalent series. 
distribution provided the best fit to these climatological series. 
for preparing contour maps of the parameter estimates. 
not occur every year, the climatological series is a mixture of zeros and water equivalent maxima. 
fitting of mixed distributions in these areas. 
Methods for determining confidence intervals for quantiles from both distributions are developed. 

1. INTRODUCTION 
The main objectives of this study are to provide an- 

alyses and results which will furnish the means of later 
obtaining design snow loads. One of the requirements 
which modern design data must meet is that they should 
provide the designer with a choice of risks which are 
related to the use of the structure. Hence, the analysis 
must provide frequency distributions in which selected 
probabilities may be used to determine design values. 

I n  the winter of 1952-53, the U S .  Weather Bureau 
began measuring the water equivalent of the snow on 
the ground each day. This provided the first extensive 
data from which the weight of the snow on the ground 
could be determined directly without reference to density. 
This weight included any rainfall added to  the snow 
mantle which must be included in the total load. The 
elimination of the consideration of density was a great 
help, for the density of a snow pack can be highly variable 
and little information on its magnitude is available. 

There have been a number of studies of snow depth 
with the objective of obtaining snow loads. As far as is 
known, all of these began with some form of snow depth 
statistics and applied a density average to obtain snow 
weight. Since the density itself is a random variable 
with a distribution having a relatively large scale, the 
distribution of water equivalent cannot be obtained by 
applying an average density to the snow depth distribu- 
tion. The distribution obtained by this procedure under- 
estimates the probabilities of the higher values being 
exceeded. It must be said, however, in justification for 
this procedure, that it furnishes design values which are 
certainly much better than no design values at  all. 

'This study was supported in part by the Agricultural Engineering Research Division, 
ARS, US. Department of Agriculture. 

2. DENSITY PROPERTIES 

Although it is commonly believed that snow pack 
density and depth are related, this is a fallacy. I n  
reference 111, figure 7.06 gives the results of an investi- 
gation the author made of the snow pack in New York 
State on March 1, 1940. The graph of density against 
depth shows no relationship, although depths varied from 
about 2 in. to 44 in. The mean density for the 218 ob- 
servations was about 0.22 in. of water per in. of snow. 
Similar independence between density and depth was 
found in an extensive series of Russian density-depth 
observations. In  connection with the present study, 363 
maximum annual snow accumulations were related to 
their corresponding densities. Again, there was no evi- 
dence of a correlation of density with depth up to  50 in. 
The correlation coefficient for these data is -0.0698, 
which is not significantly different from zero a t  the 0.05 
level. The highest density observed was at  a depth of 
10 in., and the mean was about 0.15. I n  extremely deep 
packs, greater than 90 in., there seemed to be a shift of 
the mean density to higher values, as shown by ten values 
ranging in depth from 90 in. to 180 in. with mean density 
of about 0.44. The greatest density for these values, 
however, was less than the maximum observed at  10 in. 
depth. A possible explanation for this is that such great 
depths are always the result of long accumulations and 
extreme melting periods, whereas the lower depths can 
occur in a single fall or relatively short periods of accumu- 
lation. This shift of the mean density does not affect 
our results because our methods will treat only normal 
local densities. Conditions where accumulations of such 
great magnitude are prevalent require special considera- 
tion in design problems. 

The availability of extensive water equivalent data 
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opens the possibility of studying density more closely. 
The density of the snow pack is taken to be d with units 
inches of water per inch of snow depth. The reciprocal of 
this will be called the specific depth y. Since d varies be- 
tween 0 and l ,  y must vary between l and a. The clima- 
tological series of both d and y obtained from themaximum 
annual water equivalent of the snow pack and the cor- 
responding snow depth have been found t o  follow log- 
normal distributions with unit bounds. The distributions 
are, of course, reflections of each other, but the specific 
depth distribution is a bit more conventional. The 
maximum snow depth accumulation z has also been found 
to follow a lognormal distribution. Since the product zd 
is water equivalent w, it must also follow a lognormal dis- 
tribution, although not necessarily the one sought because 
the maximum dept'h does not necessarily go with the 
maximum water equivalent. There are interesting possi- 
bilities here of using the snow depth distribution based on 
a longer record to increase the precision of the water 
equivalent distribution. For the present, the water equiv- 
alent distribution has been treated directly, leaving the 
further development of the distributions of z and y to a 
later study. 

3. STATISTICAL METHODS 

In  a previous paper [ 2 ] ,  it  was proposed to  use the Fisher- 
Tippett Type I extreme value distribution t o  fit the annual 
maximum water equivalent climatological series. Later 
in a preliminary report to the American Society of Agri- 
cultural Engineers (Paper 62-903) in Chicago, December 
1962, it was proposed to use the FrBchet distribution in an 
attempt to reflect the scale change from snow depth t o  
water equivalent. After much further study, it was found 
that neither of these asymptotes provided a satisfactory 
fit to  the water equivalent series; the Type I seemed to 
underestimate the upper quantiles whereas the Frhchet 
distribution greatly overestimated the upper quantiles. 
No exact explanation of the failure of those two asymptotic 
distributions was found, although it is suspected that it 
may be due to  the cumulative nature of the snow pack 
maxima, and the fact that they are drawn from a relatively 
small sample. The gamma distribution was also fitted t o  
a number of series but proved t o  be no improvement over 
the extreme value distributions. 

Several stochastic processes as models for the accumula- 
tion of the snow pack were tried, but none gave a clue to 
the extreme value distribution. An examination of the 
moments of a number of sample series of water equivalent 
maxima showed that the lognormal distribution should 
give a good fit. This distribution was then tried on about 
50 stations distributed over the United States and found tc 
fit annual maximum water equivalent series very well. 
This distribution was therefore employed in the climato- 
logical analysis. In all of this investigation, the classical 
work of Gumbel [3] was employed extensively. 

There is another statistical problem which occurs in 
snow distributions. This arises from the fact that in 

more southern locations of the United States, it  does not 
snow every year, and hence there is no snow pack in some 
years. This results in climatological series of zero and 
non-zero water equivalent values which form a mixed 
distribution. The general problem has been treated be- 
fore [4]. Let u=ln w and assume a lognormal distribu- 
tion for w, then u is normally distributed with distribution 
function N[u; al(u), ~ ( u ) ] .  Let q be the probability of a 
year with no snow, then p=l--q is the probability of a 
year with snow. Since the zero component with probabil- 
ity p is at  the start of the distribution, the mixed dis- 
tribution function may be expressed as 

G (u) = q+pN(u). ( 1 )  

Solving for N(u) and transforming to the unit normal 
distribution gives 

Inverting and solving for u gives 

(3) 

where N-l is the inverse normal distribution function. If 
a ( u )  is estimated by the sample standard deviation s, 
al(u)  is estimated by the sample mean U, and p is the pro- 
portion of years with snow, the sample quantile for the 
probability G(u) is given by 

u(G)=sN-' [ T ] + Z .  G(u)--P (4) 

This equation may be used to provide the design quantiles 
u(G) for specific values of l-G(u), the probability of ex- 

4. CLIMATOLOGICAL ANALYSIS 
The three most important factors limiting the pre- 

cision of a climatological analysis are accuracy of the basic 
data, the length of the climatological series, and the 
adequacy of the statistical model. 

As is well known, snow in general is a difficult element 
to measure, and snow on the ground is particularly diffi- 
cult. Not only is the snow pack extremely variable in 
depth, but it is also extremely variable in density, as 
shown by the survey mentioned earlier [I]. An exception, 
of course, is the occurrence of snow which is relatively easy 
to measure, and thus the snow or no snow series is probably 
highly accurate. 

Only ten years of records were available for the water 
equivalent series. This tailed off t o  no record at  all for 
many southern stations because the water equivalent ob- 
servations began only in 1952-53 for Weather Bureau 
first-order stations. The snow or no-snow series was ade- 
quate in all areas since long records of snow on the ground 
were available, and 30 years, the international standard, 
was used in every instance for estimating p.  

eeding a design value u(G). 
C 
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The statistical model assuming a lognormal distribution 
for the water equivalent annual maxima was shown to be 
adequate by an examination of the moments and the 
graphical plotting of climatological series for 50 stations. 
Figure 1 shows the standardized data for the first 10 
stations of the alphabetical list of 140 stations employed, 
plotted on lognormal probability paper. In view of the 
small sample, 10 points for each station, the Blom plotting 
positions have been employed. The Kolmogorov-Smirnov 
test applied to  each of the ten-point series showed no 
significant departure a t  the 0.20 limit for any of the 
samples. The reader should keep in mind that the larger 
the significance limit probability, the better is the fit. 
The probability of a good fit for all ten distributions is 
therefore high. 

The snow or no-snow climatological series was assumed 
to have a binomial distribution. The only thing which 
could cause departure from this model would be correla- 
tion from year to year. This would, of course, be 
negligible. 

As is customary, each of the parameters of the distri- 
bution (1) is assumed to form a climatological field and 
hence can be represented by contours on a map. The 
estimate of p is simply the proportion of the years with 
snow and is shown mapped in figure 2. West of the 100th 
meridian records were scarce, so, to augment the informa- 
tion on p ,  weekly maps of snow cover prepared for another 
purpose were employed. Figure 2 does not attempt to 
reflect exceptional local conditions such as occur in 
mountainous areas, but it is thought to depict conditions 
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FIGURE 1.-Standardized distribution function for 10 stations. 

where fu-st-order meteorological stations might be located. 
The unit contour separates the region to the east and 
north where a snow pack occurs every year from the com- 
plementary region where it does not occur every year. 

Figures 3 and 4 give the contours of fi and s(u), or the 
mean and standard deviation of the logarithms of the 
water equivalent series, which were estimated for the 140 

FIGURE 2.-Probability of annual occurrence of snow. 
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FIGURE 3.-Mean of the logarithms of the water equivalent series. Values are based on water equivalent of snow accumulation on ground 
Any effect for unusual conditions such as for high elevations, drifting, for general elevations such as those near meteorological stations. 

etc. must be taken into account by further analysis. 

FIGURE 4.-standard deviation of the logarithms of the water equivalent series. See legend to figure 3 for note on inapplicability of analysis 
for unusual conditions. 
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stations by the usual methods. Here again the contours 
are meant to depict only local conditions associated with 
normal exposure. Any unusual circumstances which are 
common for snow variables must be given special con- 
sideration. 

5. CONFIDENCE INTERVALS 
For the mixed distribution, it is difficult to take the 

parameters of the normal distribution into account in 
determining confidence intervals for u. A normal approx- 
imation could be used, but this gives symmetrical con- 
fidence intervals which are unrealistic at  high distribution 
function values. As a substitute, a method was developed 
for adjusting the binomial probabilities to  account for 
the mixing of unequally precise probabilities. 

It is well known that the probability at  any point on 
the sample distribution function has a binomial distri- 
bution. This has been used to obtain nonparametric 
confidence intervals by Clopper and Pearson [5]. Their 
results have been extended to  confidence values of interest 
in climatology by Deckinger (see [SI) and are reproduced 
by Dixon and Massey [7]. 

The difficulty in using the binomial distribution directly 
is that p and N(u) in equation (1) are estimated from 
different sample sizes. An adjustment to  the sample size 
will be used to  obtain a binomial approximation to  the 
distribution of the estimates of G(u) : For simplication, 
let N(u)=p’, then remembering that p+q=l and 
p’+q’=l, we may express equation (1) as 

G(u)=l-pq’ (5) 

which is also its mean value. 
since p and q‘ are independent, yields 

Taking the variance of ( 5 ) ,  

q’ and p are associated with binomial distributions with 
v(q’)=p’q’/nl and v(p)=pq/m where nl and m are number 
of years of record available for estimating v(q’) and v(p) .  
Let muz(nl)=n which is associated with p = l ,  hence 
nl=pn to the nearest integer. Thus, the f i s t  variance 
becomes v(p’) =p’q‘/pn. Substituting for v(g’) and v ( p )  
in (6) gives 

(7) 

Since max(pq)=0.25 and q‘ ’will usually be less than 0.10, 
the second term in (7) will be less than 1/12000. For q’ 
larger than 0.10, the binomial distribution for sample size 
n should be used directly on G(u). When the second term 
in (7) is ignored, it is seen that variance of G has an effec- 
tive sample size nip to the nearest integer. When p=l ,  
there are no years without snow and v(G)  approaches its 
value for sample size n. As p becomes small, there are 
no years h t h  snow and v(G) approaches zero as it should. 
Since sample size is inversely proportional to variance, 
n/p can be assumed to be an effective sample size. This 

may be used together with the mean of G(u) or l -pq ’  to 
define an approximate binomial distribution for determin- 
ing confidence intervals. Thus, when g‘s 0.10, approxi- 
mate confidence intervals are available from Dixon and 
Massey’s [7] tables A-9; the abscissa is entered with 
l-pp’ and the curves for sample size nlp are used to the 
nearest integer. If one is satisfied with confidence 
intervals which are somewhat tQo wide for all values p<l, 
one may enter the tables with sample size n which was 
proposed above for q’>0.10. In all cases, the confidence 
intervals obtained for probabilities may be converted to  
confidence intervals on u(G) by substitution in the inverse 
of the distribution function G(u) .  Those for w in all 
instances will be obtained from w=exp u. An example 
will be given at  the end of the discussion of confidence 
intervals. 

As will be noted in figure 2, about two-thirds of the 
country has p=l .  In this situation, of course, the dis- 
tribution function G(u) is normal; hence confidence 
intervals on u for particular values of G are available from 
the noncentral t-distribution. Tables are available for 
this distribution, but they cover only a narrow range of 
probabilities and are difficult to use. A very close normal 
approximation due t80 Jennett and Welch [8] has been 
adapted for obtaining confidence intervals for normal 
quantiles [9]. 

Since u is normally distributed with population mean p 

and standard deviation u, the population standardized 
value for a fixed G may be written 

K(G)=(u(G) -p) /g (8) 

which is estimated from a sample by 

k (G)  = (u( G) -Z) 1s (9) 

For a fixed G, k(C), say k for brevity, will vary from 
sample t o  sample and thus will have a distribution of its 
own. If n is the sample size for estimating S and s, JGk 
has been shown t o  have a noncentral t-distribution with 
(n- 1) degrees of freedom and noncentrality parameter 
S=&K(G). The probability P(&k<t)=F(t)=l-a de- 
fines the (1-a)th quantile of t.  This and the ath quan- 
tile are expressed as t [(n-l) ,  6 ,  1-4 and t [(n-l) ,  6, a] 
=-t[(n-I),  -8, 1-4 on the noncentral t-distribution. 
Thus the confidence limits for K(G) will be given by 

P( -t[(n-1),  -8 ,  I-a]/+<K(G) 

<t[(n-l), 6, l-a]/fi)=l-Za (10) 

Let A= 62/2(n- 1) and B= 1 - tZ(l - a) /2  (n- 1) where 
<(l-a) is (l-a)th quantile of the unit normal deviate. 
The normal approximations of the noncentral t-quantiles 
are then given by 

and 
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t(a)=tI(n-l), 6, c~]=6-{(1-01) JA+B/B (12) 

Substitution of these values in (10) gives the confidence 
limits for K(G). To obtain the confidence limits for u(G) 
it is only necessary to note that P[k<(u(G)-~)/s] is 
equivalent to P[S+sk<u(G)]. Hence the confidence 
limits are 

P{ [G+st (c~)]/&i<~(G)<[u'+.~t (1 - - o ~ ) ] / J T j i }  = 1 - 2 ~  (13) 

It must be emphasized that equations (10) and (13) 
give only confidence intervals. Several of these for a 
suitable selection of G's may be used to form a confidence 
band, but this band must only be used at  individual values 
of G and never jointly at a sample of G values. The joint 
consideration of several G values to  obtain a test for 
goodness of fit is quite a different problem. Thus the 
confidence band applies only to  individual values of G 
and cannot be used as a test of goodness of fit as has been 
tried by some. 

To obtain confidence intervals for any location above 
the p = l  line of figure 2, the mean a and standard devia- 
tion s read from figures 3 and 4 are employed. Clearly 
the value of a contour at a particular point is more precise 
than a single plotted value, for more than one point has 
been used in determining it. If it is assumed that the 
value for any point on the maps is determined from the 
average of four points whose errors are independent, the 
sample size n is multiplied by four. 

As an example, the 0.98 quantile and its 0.80 confidence 
interval for Des Moines, Iowa, are determined. From 
figure 2, Des Moines is seen to be in the p = l  region. 
The mean .ii is close to zero and s is 0.8 as seen in figures 
3 and 4. From inverse normal tables, k(0.98)=2.054. 
Substituting these values in equation (9) gives 

~ (0 .98 )  =0$2.054X0.8=1.64. 

Transforming to water equivalent yields 

w=exp(l.64)=5.16 in. 

Therefore, the chance of an annual extreme water equiv- 
alent of the snow pack exceeding 5.2 in. a t  Des Moines, 
Iowa, is 0.02. 

The 0.80 Confidence interval may be obtained as follows: 
From above n=40, a=O, s=0.8, and G=0.98. Hence 
{(l -a)={(0.90)=1.2816, K(0.98)=2.054, and 6=JTO 
(2.054)= 12.992. From these 

A== 12.992/78=0.1662 

B=1-1.642/78=0.9789 
and 

dA+ BIB=& .146/0.9789= 1.094 

Therefore, by equations (11) and (12) 

t(0.90) = 12.992+ 1.2816X 1.094= 14.394 
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and 
t ( 0 . 1 0 ) ~  12.992-1.402=11.590 

The first and last terms in the left .of equation (13) are 

[Z+st(O.lO)]/JG= (0+0.8 X 11.590)/6.325= 1.466 

and 

6 + . ~ t  (0.90) I/&, = (0 + 0.8 X 14.394) /6. 325 = 1.82 1 

so the confidence interval for u(0.98) is 

P(1.466<~(0.98)< 1.821)=0.80 

Taking exponentials to convert to water equivalent gives 

P(4.332< w(0.98)< 6.178)=0.80 

Thus the true value of w(0.98) will be covered by the 
interval (4.332 in., 6.178 in.) with probability 0.80. 

To illustrate the estimation of confidence intervals for 
the mixed distribution, i.e., when there is no snow pack 
in some years, Jackson, Miss., may be employed as an 
example. Again the interval for the 0.98 quantile is 
required. From figures 3, 4, and 5, find p=O.4, ;= -1.7, 
and s(u) =0.95. Substituting these in equation (4) gives 

~(0.98)=0.95N-~ 0*98-0'6 -1.7=-0.14 c 0.4 1 
Converting to water equivalent yields 

w(0.98)=exp(-O.14)=0.869 in. 

Therefore, the probability of exceeding 0.87 in. of water 
in the snow pack at Jackson, Miss., is 1-0.98 or 0.02. 

To obtain the confidence interval for w(0.98), since p< 1 
and q'<O.lO, the effective sample size concept developed 
above is used to approximate a binomial distribution. 
If we assume again that the contour readings have 
half the sampling errors of the original station values, 
n is again 40 and the effective sample is 4010.4 or 100. 
The 0.80 confidence limits €or the probability read from 
Dixon and Massey's [7] table A-9a at X/N=0.98 are 
0.952 and 0.987. Since these are G values, the cor- 
responding quantiles u(G) may be obtained from equation 
(4). Thus 

~(0.952) =0.95N-l 0*952-0*6 - 1.7=-0.58 I] 0.4 1 
a.n d 

u(0.987) =0.95N-l 0*987-0.6 -1.7=0.06 c 0.4 1 
Converting to  water equivalent gives 

w(0.952)=exp (-0.58)=0.56 in. 

w(0.987)=exp (0.06)=1.06 in. 
and 
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Hence, the confidence interval for the 0.98 quantile is 

P[0.56<G(~)<1.06]=0.80 
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